
Finite-time scaling via linear driving: Application to the two-dimensional Potts model

Xianzhi Huang, Shurong Gong, Fan Zhong,* and Shuangli Fan
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Zhongshan University,

Guangzhou 510275, People’s Republic of China
�Received 24 September 2009; revised manuscript received 25 March 2010; published 30 April 2010�

We apply finite-time scaling to the q-state Potts model with q=3 and 4 on two-dimensional lattices to
determine its critical properties. This consists in applying to the model a linearly varying external field that
couples to one of its q states to manipulate its dynamics in the vicinity of its criticality and that drives the
system out of equilibrium and thus produces hysteresis and in defining an order parameter other than the usual
one and a nonequilibrium susceptibility to extract coercive fields. From the finite-time scaling of the order
parameter, the coercivity, and the hysteresis area and its derivative, we are able to determine systematically
both static and dynamic critical exponents as well as the critical temperature. The static critical exponents
obtained in general and the magnetic exponent � in particular agree reasonably with the conjectured ones. The
dynamic critical exponents obtained appear to confirm the proposed dynamic weak universality but unlikely to
agree with recent short-time dynamic results for q=4. Our results also suggest an alternative way to charac-
terize the weak universality.
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I. INTRODUCTION

Numerical simulations have become indispensable for
studying critical phenomena whose hallmark is a diverging
correlation length. They are carried out inevitably, however,
on finite systems, although real phase transitions occur only
at the thermodynamic limit. Yet, this nuisance has turned into
a blessing. The method of finite-size scaling �FSS� has be-
come a routine to extract critical properties from numerical
simulations of finite systems �1–3�. Under the assumption
that upon a renormalization-group �RG� transformation of a
length rescaling factor b, the coupling constants of a finite
lattice transform in the same way as in the thermodynamics
limit, the singular part of the free energy of a finite lattice
then transforms as

F��,H,L−1� = b−dF��b1/�,Hb��/�,bL−1� , �1�

where �, �, and � are critical exponents, L is a characteristic
length scale of the system, d is the spatial dimension, H is
the external magnetic field, and the reduced temperature �
= �T−Tc� /Tc, with Tc being the critical temperature. As a
result, one arrives at the FSS ansatz for the free energy

F��,H,L−1� = L−df��L1/�,HL��/�� , �2�

where f is a scaling function. We have neglected possible
dimensional factors for conciseness hereafter. Appropriate
differentiations of Eq. �2� then give rise to corresponding
scaling forms for the magnetization M and the susceptibility
�, viz.,

M��,L� = L−�/�f1��L1/�� , �3a�

���,L� = L�/�f2��L1/�� , �3b�

where � is a critical exponent and the fs are all scaling func-
tions. In terms of the infinite system correlation length �	

that diverges at Tc as �	����−�, the argument of fs in Eqs. �2�
is proportional to L /�	 that governs the finite-size behavior;
for small L /�	 FSS appears in which L is a relevant length
scale, while large L /�	 is the thermodynamic limit in which
equilibrium behavior shows and L is irrelevant. Note that all
the critical exponents assume their infinite lattices values due
to the assumption �4�. Consequently, measuring the thermo-
dynamics quantities for a series of L can then determine the
corresponding exponent ratios since pure power laws emerge
exactly at Tc or �=0 at which fs are assumed to be regular. In
fact, for too small systems and temperatures away from Tc,
corrections to scaling have to be taken into account. Never-
theless, delicate methods exist for extracting critical expo-
nents as well as Tc �2,3�.

Noting the effectiveness of the FSS, we systematically
proposed recently its dynamic counterpart, finite-time scaling
�FTS� by noting that the equilibrium relaxation time teq also
diverges at Tc and dynamic scaling follows accordingly �5�.
This scaling consists in imposing an external time scale to a
system to manipulate its dynamics via an applied external
field that is varying linearly with time with a rate of R. We
have argued that it is the inverse sweep rate of the field, R−1,
that serves as an analog of the controllable finite size scale to
govern the dynamic scaling of the system in the FTS regime.
In particular, we have shown that for H=Rt, the magnetiza-
tion transforms under a rescaling of factor b as

M��,H,R� = b−�/�M��b1/�,Hb��/�,RbrH� �4�

so that the finite-time scaled equation of state is

M��,H,R� = R�/�rHg��R−1/�rH,HR−��/�rH� , �5�

in close similarity with Eq. �3a� but without setting H=0 by
noting that the RG eigenvalue of R is �6�

rH = z + ��/� �6�

instead of 1 for L, where g is a scaling function and z the
dynamic critical exponent. As a consequence, the FTS re-
gime is defined by small ���R−1/�rH or an intrinsic relaxation*Corresponding author; stszf@mail.sysu.edu.cn
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time teq��	
z 
HeqR−1 �the factor Heq�Meq

� ������ is the
equilibrium magnetic field corresponding to the equilibrium
magnetization Meq at ��0 and sets the dimension right�,
while for large ���R−1/�rH or small R� ����rH �Heq / teq, the
field varies so slowly that although it is changing, before it
changes, the system has already equilibrated so that the usual
equilibrium scaling

M��,H� = ��g1�H�−��� , �7�

emerges, where g1 is another scaling function. R cannot be,
of course, too large otherwise the system under driving will
leave the critical region considered. It is remarkable that all
critical exponents in FTS are naturally identical with the
usual infinite time systems without the above assumption for
FSS �5�. A systematic method for determining both dynamic
and static critical exponents as well as the critical point has
then been developed out of Eq. �5� through the scaling of
hysteresis areas and coercive fields and testified favorably
with two-dimensional �2D� and three-dimensional Ising
models �5�. Moreover, due to the finite time scale, critical
slowing down does not appear but is converted into visible
processes as compared to its spatial counterpart even though
measurements are also performed at Tc. Here we shall apply
the method to the 2D Potts model to show its versatility.

The Potts model �7–9� is a direct generalization of the
Ising model to the case in which each spin can take on q
possible states. It has been rigorously proved that the 2D
Potts model exhibits continuous phase transitions for q4
and first-order transitions otherwise �10�. The transition point
of the model is exactly known from self-duality for a general
q �8�. The thermal �11� and magnetic �12� RG eigenvalues
for q4 have been proposed hypothetically; and the pre-
dicted critical exponents for q=3 and 4 agree with the exact
exponents �13,14� of the hard-hexagonal lattice gas �15� and
the Baxter-Wu model �16�, which are believed to be in the
same universality class to the q=3 and q=4 Potts model,
respectively. Conformal-invariance theory also gives rise to
the exact exponents that are identified with the Potts model
�17�. In addition, the conjectures were shown to be asymp-
totically exact �18� and verified by a FSS combined with a
transfer matrix technique for continuous q and were sug-
gested to be true for q=3 and 4 �19�. Early numerical results
�see Table III below for detailed values� for the critical ex-
ponents such as � and � including series expansions and
real-space RG as summarized in the review paper �8� con-
formed with the conjectured values for q=3 and 4; but with
larger deviations for the latter presumably because of the
presence of strong logarithmic singularity �20,21�. Recent
results are more accurate as critical slowing down can be
avoided �21–29�.

A particular critical exponent that is of concern here is the
magnetic exponent �. The conjectured values for the 2D
Potts model are 14 and 15 for q=3 and 4, respectively. How-
ever, numerical results that measure it in the presence of an
external field so far are not as good as other exponents. One
reason is that � is large. So a modest relative error can
readily lead to a large absolute error that smears the differ-
ence between 14 and 15. Also corrections to scaling may
matter �20,21�. Note that measurement of other critical ex-

ponents, � for instance, can also give rise to � from scaling
laws. But the presence of an external field that is the origin
of the introduction of � is more directly and we shall only
adhere to this case. Early series expansion results were �
=15.0�4� and 15.8�8� for q=3 and 4, respectively, with a
conclusion that � was independent of q �30�. An improved
result by a higher-order expansion for q=3 was �
=15.0�1.5� �31�, which did not help to solve the problem.
Neither did results from a Kadanoff variation real-space RG
method that were around 15 but with no estimated errors
both for q=3 and 4 �32,33�. A first Monte Carlo �MC� RG
�MCRG� for the three-state Potts model yielded 15.26�60�
�34�. A subsequent systematic MCRG study produced, de-
spite a better value for q=3, slow convergence exponents for
q=4 with the best values of 10.63 and 12.70 with and with-
out introducing vacancies �35�, respectively, which were
concluded to be still a long way to the conjectured value.
Further, an early MC study led to �=10.8�7� for the q=3
Potts model �36�. Thus, it is desirable to determine � using
modern techniques.

Another issue is about weak universality �37�, in which
the so-called reduced exponents, i.e., exponent ratios instead
of exponents themselves, are identical. This is equivalent to
the proposition of the universality of the static critical expo-
nents � and � as long as scaling laws hold because, then

2��/�� + ��/�� = d, ��/�� = ��/���� − 1�, ��/�� = 2 − � ,

�8�

viz., the exponent ratios are also universal. The conjectured
exponents of the 2D Potts model together with those of the
exact 2D Ising model �see Table IV below� then place q=2
and q=4 model in the same class but the q=3 one only
nearly the same since it has a slightly different �. However,
the majority of numerical � as mentioned above would put
all three models in the same class, which again shows the
need for determining it.

The idea of weak universality can be generalized to dy-
namics since the dynamic critical exponent z itself is a re-
duced exponent �38�. After some early scattered results
�38–43�, systematic determinations of z for all three values
of q=2,3 ,4 yielded almost identical results of about z
=2.17�4� �44� and z=2.16�5�, z=2.16�4�, and z=2.18�3�, re-
spectively �45�, indicating that all the three q models appear
to belong to a single dynamic weak universality class. How-
ever, recent short-time critical dynamic methods found z
=2.19 for q=3 �46–48� but apparently distinct z=2.29
�26,48� for q=4 �see Table III for errors�. It is therefore in
need again to determine systematically within one method
the dynamic critical exponent for the three models to clarify
the issue of weak universality.

In order to study these issues, we adapt the FTS method to
the Potts model. To this end, we apply a linearly varying
external field that couples just to any one Potts state. The
order parameter is then defined as the average of that state
only instead of the most popularized state that is usually used
�8�. To obtain the coercivity, we introduce a nonequilibrium
susceptibility and identify the field at its peak with the coer-
civity. From the FTS of the order parameter, the coercivity,
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the hysteresis area and its derivative, we can then determine
systematically both static and dynamic critical exponents as
well as the critical temperature. In particular, through intro-
duction of the external field, the magnetic exponent can be
measured more directly. Moreover, a method is devised to
measure more accurately the exponents. We note in passing
that we have studied the 2D three-state Potts model using a
linearly changing temperature instead of external field but
with an extended dynamic MCRG method �28�, an approach
different from the present one. Note also that we consider
here only local dynamics as realized in the single-site Me-
tropolis algorithm �49�. Nonlocal dynamics arisen from algo-
rithms such as Swendsen-Wang �50� or Wolff �51� has a
much reduced z and will not be pursued further.

The rest of the paper is organized as follows. We shall
briefly summarize the FTS method of obtaining critical prop-
erties in Sec. II and then present the model and results in Sec.
III. First, the Potts model, the definition of the order param-
eter and the nonequilibrium susceptibility, along with simu-
lation details are introduced in Sec. III A. Then, the simula-
tion results including their consequence on critical slowing
down and a method to extract more accurately the exponents
are presented in Sec. III B. Comparison with existing results
is made in Sec. III C. An alternative characterization of the
weak universality and a possible application of it are also
proposed there. A summary is given in Sec. IV.

II. SUMMARY OF THE FTS METHOD

We now summarize the method to obtain critical proper-
ties. Details can be found in �5�. In the FTS regime, the
external time scale dominates and drives the system off equi-
librium. Hysteresis then emerges even at Tc. In order to deal
with the circumstance of two variable in Eq. �5�, we scan H
back and forth with the same rate R to form a hysteresis loop
and integrate over H to get its area A=�MdH. We then ob-
tain from Eq. �5� FTS of the coercivity Hc, A, and its deriva-
tive as

Hc��,R� = RnHg2��R−1/�rH� , �9a�

A��,R� = RnH� g3��R−1/�rH� , �9b�

�A��,R�/�� = Ra1g4��R−1/�rH� , �9c�

with

nH = ��/�rH,

nH� = ��� + 1�/�rH,

a1 = ��� + 1�/�rH − 1/�rH, �10�

where all gi are scaling functions.
At �=0, exact power laws

Hc��=0 � RnH,

A��=0 � RnH� ,

�A/����=0 � Ra1, �11�

follow, from which nH, nH� , and a1 can be determined. The
critical temperature can also be determined by finding the
minimum deviation from the power-law behavior. Combin-
ing the exponents found with the hyperscaling law ���+1�
=d�, one can calculate all the static and dynamic critical
exponents from

� = nH/�nH� − nH�, �/� = d�nH� − nH�/nH� ,

z = d�1 − nH�/nH� , rH = d/nH� ,

� = �nH� − nH�/�nH� − a1�, � = nH� /d�nH� − a1� . �12�

Note that in Eqs. �12� the first two lines require only nH and
nH� , while the last line needs a1.

III. MODEL AND RESULTS

A. Potts model

The Hamiltonian of the Potts model in the presence of an
external field H along the first direction is

H = −
J

kBT
�
	i,j


��i,�j
−

H

kBT
�

i

��i,1
, �13�

where the spin at site i of a 2D lattice, �i, can take q states
from 1, 2, to q, kB is Boltzmann’s constant, and � is the
Kronecker delta function. In Eq. �13�, the first summation
runs over all the nearest-neighbor spin pairs and the second
over all spins. We shall adopt a unit in which kB=J=1 for
simplicity. Thus the critical point in the absence of H is �7�

Tc = 1/ln�1 + �q� , �14�

which is in fact a multicritical point �52�.
We define the order parameter as

M = �N1

N
 =� 1

N
�

i

��i,1 , �15�

namely, the average number of the first state, instead of the
usual definition

M� = � qNmax/N − 1

q − 1
 , �16�

where N is the total number of spins and Nmax
=max�N1 ,N2 , . . . ,Nq�, with Nq representing the number of
spins in state q, because it is M not M� that conjugates ther-
modynamically to the field H and should thus assume the
scaling form Eq. �5� although the Potts model and the �4

model are not in the same universality class. To obtain usual
hysteresis loops, one may rescale the order parameter by

m = 2M − 1, �17�

which expands the range of values from M � �01� to
m� �−11�.

To attain the coercivity, a simple way may be to take as
usual the field H at m=0. This would incur, however, sys-
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tematic corrections because the true order parameter M
=1 /2 at m=0 and thus Eq. �9a� would become

Hc��,R� = RnHg2��R−1/�rH,�1/2�R−�/�rH� , �18�

which has one more argument proportional to M and thus
introduces corrections to scaling even at �=0. To overcome
this, we utilize a nonequilibrium susceptibility � that is de-
fined as

� = �	N1
2
 − 	N1
2�/N , �19�

which exhibits at the transition a peak whose position then
defines the coercivity. Because of the vanishing derivative at
the peak, no corrections have to be considered at Tc.

We use the usual Metropolis algorithm �49� with sequen-
tial sampling. The lattice used is 512�512 with periodic
boundary conditions. We have checked that for that large
lattice size, smaller lattices like 256�256 only enlarge fluc-
tuations but yield nearly identical results. However, too small
lattices might show finite-size effects and extrapolations
might be needed for accurate results. For each finite-time
scale proportional to R−1, 100 independent samples are used
for average. Larger sample sizes increase, of course, statisti-
cal properties of the results, while sufficiently small rates are
essential for accuracy. This has several reasons. First, R must
not be too large; otherwise the external time scale set by R−1

is not long enough as compared to microtime scales for dy-
namic scaling to emerge. Also for large rates, their large
hysteresis overwhelm the small ones and thus affect the fit-
ting. Moreover, as mentioned in the introduction, whereas at
Tc, the FTS regime extends to all small enough rates as teq
diverges, it ends roughly to the crossover line ���R−1/�rH �1
beyond which the FTS fails. Accordingly, using small rates
will increase the precision for determining at least the critical
point �5�.

In order to obtain good hysteresis loop areas, the initial
conditions need special attention. This is because although
state 1 is energetically favored or disfavored by the external
field, the other states are degenerate. Different populations of
these other states change the total energy of the system due
to the interfacial energy among them and may thus affect the
value of the order parameter M and hence the closing of
hysteresis loops. For these reasons, we start with a state in
which all sites are set to state 1 at H=−H0 that should be
chosen to be sufficiently large for the order parameter to be
saturated and the hysteresis loop to close but has been
checked not to affect scaling otherwise. After thousands of
MC steps per spin �the time units� at that field for equilibra-
tion, the field is swept forward and then backward according
to H= �H0�Rt to form a hysteresis loop. We found that the
equilibrated configuration obtained possesses similar number
of the other states besides the first one, a configuration which
did not minimize energy but retraceable possibly because of
the high temperatures used.

B. Simulation results

Figure 1 shows examples of hysteresis loops of H vs m at
Tc. The data points denoted by symbols have been sifted for
clarity. When H is positive and large, state 1 is energetically

favored and M and m close 1; while for negative and large
H, other states than 1 are favored and M is small. A transition
that is of concern here then takes place at H=0 at equilib-
rium �R=0� but at Hc �near m=0� when driving. Note that
there are stationary states that are independent of R for posi-
tive and negative fields beyond the transition region that
scales with R. Figure 2 displays the hysteresis loops for dif-
ferent T at the same R. Generally, the higher the temperature,
the smaller the hysteresis loops. One sees from Figs. 1 and 2
that all the hysteresis loops appear in fact similar in the vi-
cinity of Tc. They show clearly that in the present case of
nonequilibrium driving, the system subjects a crossover from
an equilibriumlike to a FTS regime. In the stationary states
that are far from the critical point at H=0, the correlation
time of the system is short compared to R−1 and thus it is
controlled by the correlation time instead of R−1 and equili-
brates quickly and hence is equilibriumlike and follows Eq.
�7� if it is still in the critical region. While in the transition
region, the system is controlled by the effective finite time
scale R−1. The longer it is, the closer the system comes to-
ward the equilibrium state because it has longer time to
equilibrate. Eventually, if R=0, no hysteresis would appear
at all, and Eq. �7� is followed again.

FIG. 1. �Color online� The hysteresis loops of the 2D �a� q=3
and �b� q=4 Potts models at T=0.995 and T=0.910, respectively,
for several sweep rates R. Lines connecting symbols are only a
guide to the eye.
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As all hysteresis loops behave similar, Tc appears now not
special. Neither is critical slowing down a problem. In fact, it
is now converted into a controllable process. The FTS re-
gime is defined by ���R−1/r��1 or HeqR−1 / teq�1 as pointed
out in Sec. I. To probe deep in the asymptotic region where
teq�1, one should use a large R−1 or small R, which means
a long time, although the field H is small from Fig. 1. This is
because although the hysteresis characterized by Hc de-
creases with R as Hc�RnH, if it is measured in terms of the
time tc�Hc /R, tc�R−�1−nH�, i.e., increases with R−1 since
nH�1. The long time required by a small R is, however,
controllable because a prescribed H is reached at t= �H
−H0� /R, where H0 is the field at t=0. Therefore, the linear
driving has converted the critical slowing down into a some-
how visible process.

Figure 3 demonstrates the peaks of the susceptibility for
several rates. The data points shown have also been sifted for
clarity. The peaks moves to low fields �absolute values� and
increase their heights with R−1 or long relaxation times rea-
sonably. When R=0, crossover to equilibrium occurs in
which the two peaks of a same rate, and in fact, all the peaks
shown should merge into a single peak with its height di-
verging in the thermodynamic limit. One sees that distinct to
the Ising cases �5�, the peaks are not symmetry for the
ascending- and descending-field processes, with the former
higher than the latter. This may reflect the fact that when the
field is increasing, the single state 1 is always favored. But
when the field is decreasing, all other states may compete. In
addition, the Potts model is inherently asymmetry as it con-
tains a cubic term �8�.

Dependences of A on R and T for q=3 and q=4 are pre-
sented in logarithmic scales in Figs. 4�a� and 4�b�, respec-
tively. One sees that similar to the Ising model �5�, A de-
creases reasonably with increasing T and the time scale R−1.

Near Tc, the relation between A and R is almost linear, but it
curves up and down below and above Tc, respectively, for
small Rs. Deviations from the power law between A and R
when T varies are given in Table I. The minimum deviation
appears at T=0.995 for q=3 and T=0.910 for q=4, which
are consistent with the known Tc=0.99497 and Tc=0.91024,
respectively, from Eq. �14�. Their precisions are thus 0.001
which is the temperature interval we used.

C. Static and dynamic critical exponents

Having determined Tc, we could then proceed as previous
�5� to measure nH� , nH, and a1 from the slopes of A, Hc, and
�A /�� versus R, respectively, at Tc=0.995 for q=3 and

TABLE I. Standard deviations �SD�10−8� to the power-law behavior as T varies around Tc for q=3 and
q=4.

q=3 T 0.993 0.9994 0.9995 0.996 0.997

SD 18.129 13.174 5.4197 6.9307 10.629

q=4 T 0.908 0.909 0.910 0.911 0.912

SD 122.08 78.809 49.641 58.939 88.022

FIG. 2. �Color online� The hysteresis loops of the 2D q=3 Potts
model at R=5�10−7 for various Ts in the vicinity of Tc. Lines
connecting symbols are only a guide to the eye.

FIG. 3. �Color online� The susceptibility � /N versus H of the
2D �a� q=3 and �b� q=4 Potts models at T=0.995 and T=0.910,
respectively, for several sweep rates R. Lines connecting symbols
are only a guide to the eye.
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Tc=0.910 for q=4 in logarithmic scales as illustrated in Fig.
5. We have used differences at T=0.993 and T=0.997 for
q=3 and T=0.909 and T=0.911 for q=4 to approximate the
derivatives. Owing to the statistical errors of A and Hc, the
slopes of such direct fits would yield, however, poor results
of critical exponents albeit with high precisions. This may be
appreciated from Fig. 6, in which we plot n vs y0 of fits to
y=y0+aRn, where y denotes A, Hc, or �A /��. Each data
point in it is obtained by neglecting sequentially the largest
rate of the remaining data and occasionally also one or two
smallest rate�s� for rectification. For example, if we have a
series of R in ascending order R1, R2 , . . ., Rs, ni and y0i are
obtained by fitting those data with R from R1 to Rs−i+1. Note
that the data points do not appear, however, in this order in
Fig. 6. Nevertheless, they fall generally onto a line at least
near y0=0 in each subfigure, appearing to justify the method.
The only exception is Fig. 6�d�, in which the data points
bifurcate near y0=0 for a lot of points, which we thus keep
and fit without neglecting any point. The relatively wide
range of n in Fig. 6 reflects the sensitivity of the fits and also
the statistical errors.

Accordingly, our method to extract nH� , nH, and a1 more
accurately is then to fit the data points shown in Fig. 6 by
polynomials. The exponents are then identified from the fits
�lines through data points in Fig. 6� with the values at y0
=0 indicated by the vertical lines, and their respective errors
estimated from the maximum out of the fits and the root
mean square of all the data. This may overestimate the pre-
cision of the results. As an evidence, note that we have not
shown the error bars in Fig. 6. This is because if they were

shown, they would fill most of the figures because most of
them are of the order of magnitudes of the axis scales. As a
consequence, fits would be poor.

There is another source of errors. As our chosen Tcs are
not equal to the exact ones, the real y0 for A and Hc may not
be exactly zero albeit tiny �6�, and the effect of the shift on
�A /�� may double due to the central difference we used.
Yet, even for T=Tc, the exact one, finite-size effects may
shift the actual Tc off it. Of course, this shift does not just
exist here but generally. Fortunately, possibly for the real y0
may indeed be tiny, our results appear to be quite good,
except the q=4 a1 that depends indeed on �A /��, since the
deviation of our chosen Tc from the real one is bigger for
q=4 than for q=3.

From nH, nH� , and a1, all the critical exponents can
be calculated according to Eqs. �12� and are collected in
Table II.

D. Comparison with existing results

To compare with existing results, we extend the table
compiled in Wu’s review paper �8� to Table III. Comparing
Tables II and III, one sees reasonable agreement with the
conjectured values both for q=3 and q=4. The only static
exponents that escape the error limits are � of both q and �
of q=4; but note that the errors may have been underesti-
mated as pointed out above. As mentioned in the previous
paper �5�, these large deviations stem probably from the error
of a1, which is the most serious one in our method, as it
involves derivative �22,53�. Also as mentioned in the last

FIG. 4. �Color online� The hysteresis area A plotted with error bars versus R in logarithmic scales for 2D �a� q=3 and �b� q=4 Potts
model. Lines are linear fits at Tc=0.995 and Tc=0.910 for q=3 and q=4, respectively.

FIG. 5. �Color online� �a� A, �b� Hc, and �c� �A /�T plotted with error bars versus R in logarithmic scales at Tc=0.995 and Tc=0.910 for
q=3 and q=4, respectively.
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subsection, the shift of Tc may affect the accuracy of a1. As
an evidence, note that � /� of both q behaves well as it is
independent of a1 from Eq. �12�. In addition, the relatively
large error of � of q=4 arises from the small �nH� −nH� factor
in the denominator that enlarges every error. Although our
measured �s for q=3 and q=4 still overlaps slightly within
the errors, they should nevertheless support their respective
conjectured values.

The dynamic critical exponent z obtained for both q=3
and q=4 agrees well with previous MC simulation results
�44,45�, and taking together with z of the Ising model mea-
sured by the FTS method as listed in Table IV �5� appears to
confirm the dynamic weak universality that the Potts model
with q=2, q=3, and q=4 all share the same z but not to
support the short-time dynamic results �26,48�. Note that al-
though the relative errors of � and � of q=4 are almost up to
9%, they should mostly stem from the error of a1 as men-
tioned above. The relative errors of other quantities including
z that do not contain a1 are small. However, the relative error
of 2.16 and 2.29 is about 5–6 %, just near the verge of the
present precision of the other quantities. So, overlap of the
two zs seems unlikely albeit not exclusive. More work is,
therefore, welcome here.

As mentioned in the introduction, static weak universality
means � and � are identical, while dynamic one will suggest
z be the same. So, both static and dynamic weak universality

will need all the three exponents to be identical. From Eqs.
�12� and

� = 2nH/nH� − d , �20�

one sees that these three exponents depend only on nH� �or rH�
and nH for the same spatial dimension d. Referring to the
values nH� �or rH� and nH for the 2D Ising model �5� listed in
Table IV, one finds that all three models with q=2, 3, and 4
indeed share the same nH� �or rH� and nH exactly to the sec-
ond effective digits. However, one knows from the conjec-
tured values that the q=3 model has a � that is different from
the other two and thus is not in the same weak universality
class. Yet, from Table IV, the reduced exponents are, in fact,
quite close though certain exponents themselves may differ a
lot, � in particular. Therefore, a possible application of the
weak universality hypothesis is to predict quite accurately
the reduced exponents and even some exponents themselves
of a system whose critical exponents have not been exactly
determined but that is already known even roughly to belong
to a weak universality class. This latter knowledge will re-
quire three exponents �, �, and z. However, using the present
FTS method, one needs just nH� �or rH� and nH with an accu-
racy of only up to their second effective digits, which may be
readily realized.

FIG. 6. �Color online� n vs y0 of fits to y=y0+aRn for the ��a�–�c�� q=3 and ��d�–�f�� q=4 Potts model at Tc=0.995 and Tc=0.910,
respectively. We denote in the figures n for A, Hc, and �A /�T directly as nH� , nH, and a1, respectively, although the latter are only the values
at the intersections of the vertical lines at y0=0 and the other lines that are fits of the data by cubic polynomials.

TABLE II. Measured and derived exponents.

q nH� nH a1 � � /� � � z rH

3 0.4969�12� 0.4624�9� 0.200�10� 13.4�6� 0.139�6� 0.116�5� 0.838�3� 2.164�7� 4.025�10�
4 0.4954�13� 0.4645�21� 0.154�12� 15.1�1.3� 0.124�10� 0.0900�7� 0.726�3� 2.163�10� 4.039�11�
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These remarks on the weak universality lead to a further
conclusion. Whereas determining a weak universality class
may only require an accuracy of up to two effective digits of
nH� �or rH� and nH, at least three are needed to accurately
determine the critical exponents themselves.

IV. SUMMARY

We have adapted the FTS method to the 2D q=3 and q
=4 Potts models to determine systematically their critical
properties, their magnetic critical exponent � and dynamic
critical exponent z in particular. To this end, we have applied

for the first time a linearly varying external field to the Potts
model that couples to one of its q states to manipulate its
dynamics in the vicinity of its Tc and defined the order pa-
rameter other than the usual one and the nonequilibrium sus-
ceptibility to extract the coercive fields. The applied field
drives the system out of equilibrium and thus produces hys-
teresis. From the FTS of the order parameter, the coercivity,
and the hysteresis area and its derivative, we can then deter-
mine both static and dynamic critical exponents as well as
the critical temperature. The static critical exponents ob-
tained in general and � in particular agree reasonably with
the conjectured ones. The dynamic critical exponents ob-

TABLE III. Comparison of various numerical estimates of critical exponents.

q Method � � � z

3 Conjectured value 14 1 /9=0.11111 5 /6=0.83333

MC �36� 10.8�7�
Kadanoff variational RG �32� 14.48 0.1061

Kadanoff variational RG �33� 14.64 0.107 0.837

MCRG �34� 15.26�60� 0.101�6� 0.824�10�
MCRG �35� 14.38 0.82

Migdal RG �38� 1.92

MC nonlinear relaxation �39� 0.1 2.28

Dynamic MCRG �40,41� 2.7�4�
FSS �42� 2.2�1�
Dynamic MCRG �43� 2.43�15�
Extended dynamic MCRG �28� 0.108�4� 0.816�27� 2.171�62�
Series expansion �30� 15.0�4� 0.105�5�
Series expansion �31� 15.5�1.5� 0.1064

MC equilibrium relaxation time �44� 2.17�4�
MC magnetization relaxation �45� 2.16�4�
Density-Matrix RG �24� 0.1112�1� 0.8333�8�
Short-time dynamics �22� 0.107�6� �1.24�3��−1 2.196�8�
Short-time dynamics �46� 2.196�8�
Short-time dynamics �47� 2.191�6�
Short-time dynamics �48� 2.197�3�
Nonequilibrium critical relaxation �29� 0.1080�20� �1.213�6��−1 2.1735�40�
FTS �this work� 13.4�6� 0.116�5� 0.838�3� 2.164�7�

4 Conjectured value 15 1 /12=0.08333 2 /3=0.66667

Kadanoff variational RG �33� 15.53

MCRG with vacancies �35� 10.6 0.75

MCRG without vacancies �35� 12.70 0.75

Dynamic MCRG �43� 2.36�20�
Migdal RG �38� 2.0

MC nonlinear relaxation �39� 2.85

Series expansion �30� 15.8�8�
MC equilibrium relaxation time �44� 2.17�4�
MC magnetization relaxation �45� 2.18�3�
Density-Matrix RG �24� 0.0795�37� 0.662�13�
Short-time dynamics �25,48� 0.0836�2� 0.667�1� 2.290�3�
Short-time dynamics �26� 0.0830�6� 0.669�6� 2.294�3�
FTS �this work� 15.1�1.3� 0.0900�7� 0.726�3� 2.163�10�
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tained appear to confirm the proposed dynamic weak univer-
sality that the Potts model with q=2 �Ising model�, q=3, and
q=4 all share the same z of about 2.17. This, however, un-
likely to agree with recent short-time dynamic results for q
=4 and thus calls for further studies. The simulation results
also show that critical slowing down does not appear in FTS
directly but has been converted into visible processes of run-
ning small Rs.

We have proposed to use the exponents nH� �or rH� and nH
as a more convenient token for defining weak universality
because for a system to be in a weak universality class, it

may possibly require these exponents to have an accuracy to
just two effective digits, which can be readily obtained. Of
course, more digits are demanding for accurately determin-
ing the critical exponents.

The theory and results of the present work therefore show
that the FTS can be as effective as the usual FSS.
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